

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования АМУРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (ФГБОУ ВО «АмГУ»)

ХХІ РЕГИОНАЛЬНАЯ НАУЧНО-ПРАКТИЧЕСКАЯ КОНФЕРЕНЦИЯ «МОЛОДЕЖЬ ХХІ ВЕКА: ШАГ В БУДУЩЕЕ»

СЕКЦИЯ: «ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ»

СИСТЕМА МУЛЬТИФРАКТАЛЬНОГО ВЕЙВЛЕТ-АНАЛИЗА РАСТРОВЫХ ИЗОБРАЖЕНИЙ И СЛОЖНЫХ ВРЕМЕННЫХ СИГНАЛОВ

Афанасов Леонид Сергеевич

студент 2 курса магистратуры, направление подготовки: «Прикладная математика и информатика», факультет математики и информатики

Научный руководитель: профессор кафедры «Математический анализ и моделирование», д.ф.-м.н. Масловская А.Г.

20 мая 2020 г.

АКТУАЛЬНОСТЬ ТЕМЫ ИССЛЕДОВАНИЯ

<u>Анализ данных в приложениях</u>: сложные сигналы (временные ряды, обладающие меняющимся со временем спектральным составом) и растровые изображения (изображения сегнетоэлектриков, обладающих самоподобной структурой).

<u>Центральная идея анализа данных</u>: исследование изменения частотновременных характеристик исходных данных с использованием базиса.

Примеры сложных сигналов из прикладных областей

- > акустические сигналы сердца
- > динамика артериального давления
- > сейсмологические и климатические процессы
- > динамика жидкости и турбулентности
- ▶ потоки космических лучей
- > динамика финансовых показателей
- > изменение давление в компрессоре авиационного двигателя

Объект: сложные временные сигналы (ряды) и растровые изображения.

<u>Предмет</u>: математические и программные средства для мультифрактального вейвлет-анализа временных рядов.

<u>Цель:</u> развитие математического и разработка программного обеспечения для цифровой обработки сложных сигналов и изображений на основе мультифрактального вейвлет-анализа.

Задачи:

- ≻применение Фурье- и вейвлет-преобразований для частотновременного анализа сложного физического сигнала и растровых изображений самоподобных физических структур;
- разработка прикладной программы с пользовательским интерфейсом для проведения мультифрактального вейвлет-анализа сложных временных рядов и растрового изображения;
- >верификация работы комплекса программ на примерах искусственно-сгенерированных фрактальных рядов и растровых изображений;
- решение прикладных задач: мультифрактальный анализ динамических данных солнечной активности и РЭМ-изображений сегнетоэлектриков.

1 ФУРЬЕ- И ВЕЙВЛЕТ-АНАЛИЗ ДИНАМИЧЕСКИХ ДАННЫХ

Частотный

преобразование Фурье хорошо локализует частоту, но без временного разрешения

Частотно-временной

Вейвлет-преобразование позволяет получить локализацию сигнала и по частоте, и по времени

Термин «вейвлет» ввели Гроссман и Морле в 1984 г. при анализе сейсмических сигналов

Тестовый пример - анализ искусственного сигнала, заданного комбинацией синусоид $s(t) = A_1 \sin(2\pi f_1 t) + A_2 \sin(2\pi f_2 t)$

где $A_1 = 1, A_2 = 0,5 - амплитуды компонент сигнала;$ $f_1 = 1$ Гц, $f_2 = 10$ Гц – частотные компоненты сигнала.

Скелетон линий локальных экстремумов (максимумов и минимумов): на графике, присутствуют светлые и темные области. Максимумы соответствуют светлой области, а минимумы – темной.

Результат вейвлет-преобразования поверхность коэффициентов вейвлет-преобразования

2 МУЛЬТИФРАКТАЛЬНЫЙ АНАЛИЗ ДИНАМИЧЕСКИХ ДАННЫХ

Объект исследования: временной ряд, заданный изменением количества солнечных пятен за период с 1974 г. по 2018 г.

http://lasp.colorado.edu/lisird/tss/composite_lyman_alpha.html

• Исходный сигнал на временном периоде с 1975 по 2018 гг.

В сигнале присутствует низкочастотные и высокочастотные составляющие. Фурьепреобразование локализует частоты временного сигнала, но не локализует его особенности во времени.

АЛГОРИТМ МЕТОДА МАКСИМУМ МОДУЛЕЙ ВЕЙВЛЕТ-ПРЕОБРАЗОВАНИЯ (ММВП): ПРОГРАММНАЯ РЕАЛИЗАЦИЯ В ППП МАТLAB

<u> 1 этап алгоритма ММВП:</u>

Вейвлет-преобразование исходного сигнала:

$$W(a,b) = \frac{1}{\sqrt{a}} \int_{-\infty}^{+\infty} f(x) \cdot \psi\left(\frac{x-b}{a}\right) dx,$$

где f(t) – исходный ряд, a – параметр масштаба, b – момент времени, ψ – вейвлет-функция.

Результат вейвлет-преобразование можно интерпретировать как поверхность в трехмерном пространстве.

Наиболее важная информация о ней содержится в скелетоне, или линиях локальных экстремумов поверхности коэффициентов *W*(*a*,*b*).

• Вейвлет-преобразование (в период минимальной активности Солнца): поверхность W(a,b) и ее проекция

Материнский вейвлет – «Мейер»

Вейвлет-преобразование (в период максимальной активности Солнца): поверхность W(a,b) и ее проекция

Материнский вейвлет - «Морле»

локальных

экстремумов

отображает

области,

максимумам и

минимумам

2 этап алгоритма ММВП:

Построение частичных функций: $Z(q,a) = \sum_{l \in L(a)} \left(\sup_{a' \le a} |W(a', x_l(a'))| \right)^q$

где L(a) – есть множество всех линий (l) локальных максимумов модулей вейвлет-коэффициентов, существующих на масштабе a;

Мультифрактальные характеристики множества в алгоритме ММВП, определяются преобразованием Лежандра: $h = \frac{d\tau}{dq}$, $D(h) = qh - \tau(q)$

Muzy J.F., Barcy E., Arneodo A. Wavelets and multifractal formalism for singular signals: Application to turbulence data – Phys. Rev. Lett., 1991 – 3515 p.

11

Спектральные характеристики

3 СТРУКТУРА И ФУНКЦИОНАЛ СИСТЕМЫ КОМПЬЮТЕРНОГО АНАЛИЗА ДИНАМИЧЕСКИХ СИГНАЛОВ И РАСТРОВЫХ ИЗОБРАЖЕНИЙ

Общая концепция приложения

Взаимодействие пользователя с системой при обработке исходных данных

Структура процесса обработки данных

Программный модуль

для обработки растровых изображений

Реализация обработки растровых изображений по шагам

Программный модуль

для обработки растровых изображений

Модуль для обработки динамических данных

4 ВЕРИФИКАЦИЯ РАБОТЫ КОМПЛЕКСА ПРОГРАММ

Результат работы алгоритма на примере тест-задачи

С целью верификации работы программного приложения и демонстрации особенностей работы алгоритма, рассмотрим тестовую задачу анализа анизотропного изображения, искусственно синтезированного с использованием коричневого шума для каждой строки изображения.

Расчет и построение скейлинговых характеристик

Известно, что значение скейлинговой экспоненты $\tau(0)$ =-1 и для коричневого шума $\tau(2)$ =0, что отвечает данным, представленным на рисунке выше

5 МУЛЬТИФРАКТАЛЬНЫЙ ВЕЙВЛЕТ-АНАЛИЗ СКЕЙЛИНГОВЫХ ХАРАКТЕРИСТИК РАСТРОВЫХ ИЗОБРАЖЕНИЙ СЕГНЕТОЭЛЕКТРИКОВ

В качестве объектов исследования мультифрактальных свойств растровых изображений самоподобных физических систем выберем микрофотографии сегнетоэлектрических материалов, полученные методами РЭМ. Значение масштабного параметра *а* соответствовало диапазону [1,30], параметр деформации *q*∈[-2,2].

20

Спектральные характеристики РЭМ-изображения кристалла ТГС:

Мультифрактальный спектр для сегнетоэлектрической керамики 0.94(Na_{1/2}K_{1/2})NbO₃–0.03LiSbO₃–0.03LiTaO₃. Для расчетов использован материнский вейвлет – «мексиканская шляпа».

Спектр сингулярностей для РЭМ-изображения керамики

Эволюция спектра сингулярностей РЭМ-изображения доменной структуры кристалла ТГС, наблюдаемая в неравновесных условиях температурного нагрева

выводы

- Проведен частотный Фурье-анализ и частотно-временной вейвлетанализ данных солнечной активности. Установлено, что во всем временном диапазоне сигнала в большом количестве присутствуют высокочастотные составляющие (на малых масштабах *a*), в меньшем – низкочастотные (на больших масштабах *a*).
- Разработана прикладная программа для проведения мультифрактального вейвлет-анализа сложных временных сигналов.
- Результаты демонстрируют мультифрактальные свойства исследуемого ряда (нелинейную зависимость скейлинговой экспоненты и уширение спектра) и смещение уровня максимума спектральной кривой в периоды интенсивной солнечной активности.
- Алгоритмически реализован мультифрактальный подход к исследованию изображений самоподобных структур. Выполнена программная реализация метода ММВП. Получены спектральные характеристики исследуемых изображений.